Two-Dimensional Homogeneous Polynomial Vector Fields with Common Factors
نویسندگان
چکیده
منابع مشابه
Phase Portraits for Quadratic Homogeneous Polynomial Vector Fields on S
Let X be a homogeneous polynomial vector field of degree 2 on S. We show that if X has at least a non–hyperbolic singularity, then it has no limit cycles. We give necessary and sufficient conditions for determining if a singularity of X on S is a center and we characterize the global phase portrait of X modulo limit cycles. We also study the Hopf bifurcation of X and we reduce the 16 Hilbert’s ...
متن کاملconstruction of vector fields with positive lyapunov exponents
in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...
15 صفحه اولLiouvillian Rst Integrals of Homogeneous Polynomial 3-dimensional Vector Elds
Given a 3-dimensional vector eld V with coordinates V x , V y and V z that are homogeneous polynomials in the ring kx; y; z], we give a necessary and suucient condition for the existence of a Liouvillian rst integral of V , which is homogeneous of degree 0. This condition is the existence of some 1-forms with coordinates in ring kx; y; z] enjoying precise properties; in particular, they have to...
متن کاملTwo-dimensional global manifolds of vector fields.
We describe an efficient algorithm for computing two-dimensional stable and unstable manifolds of three-dimensional vector fields. Larger and larger pieces of a manifold are grown until a sufficiently long piece is obtained. This allows one to study manifolds geometrically and obtain important features of dynamical behavior. For illustration, we compute the stable manifold of the origin spirall...
متن کاملStable Piecewise Polynomial Vector Fields
Let N = {y > 0} and S = {y < 0} be the semi-planes of R2 having as common boundary the line D = {y = 0}. Let X and Y be polynomial vector fields defined in N and S, respectively, leading to a discontinuous piecewise polynomial vector field Z = (X, Y ). This work pursues the stability and the transition analysis of solutions of Z between N and S, started by Filippov (1988) and Kozlova (1984) and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1994
ISSN: 0022-247X
DOI: 10.1006/jmaa.1994.1061